Omega 3 - The life fuel

Benefits of Omega 3

Omega 3 is a type of fatty acid that helps produce the energy needed for life.

The human body produces only very little Omega 3 and must therefore get more of it from food or supplements.

Omega 3 has been studied extensively during the last decades and there are already thousands of studies on it, many of which show a clear and wide benefit for health, such as cardiovascular and mental health.

Adding to that, there is now an increasing number of studies that shows how good Omega 3 is for children, infants and fetuses alike.


Types of Omega 3

There are many types of Omega 3 fatty acids. Two notable examples are DHA and EPA

AlvoGenius contains a high concentration of DHA, making it suitable for the growing infant brain.


Omega 3 vs. Omega 6

There used to be a good balance between our consumption of Omega 3 and Omega 6, which is another type of fatty acid.5

Today, the balance is lost and that disruption is believed to be one of the contributing factors to the increase of lifestyle related disease today, such as heart disease, and even mental health problems.6

Omega 6 fatty acids are known for increasing inflammation in the body. Inflammation plays an important role in many illnesses like arthritis and heart disease.

It therefore makes a lot of sense for modern people to consume enough Omega 3 to even out the difference between Omega 3 and 6, which used to be 1:1 but is now 1:20.5

Once there was balance

Now we only eat 5% of the Omega 3
we used to as compared with Omega 6

1Innis, S. (2005). Essential fatty acid transfer and fetal development. Placenta, S70-S75.
2Jensen, C. V. (2010). Effects of early maternal docosahexaenoic acid intake on neuropsychological status and visual acuity. The Journal of Pediatrics, 157, 900-905.
3Smuts, C. H. (2003, March). A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy. Obstetrics & Gynecology, 101(3), 469-479.
4Brenna, J. L. (2009). Background paper on fat and fatty acid requirements during pregnancy and lactation. Annals of Nutrition & Metabolism, 55, 97-122.
5Simopoulos, A. (2002). The importance of the ratio of omega6-omega3 essential fatty acids. Biomedicine and pharmacotherapy, 56, 365-379.
6Simopoulos, A. (2006). Evolutionary aspects of diet, the omega 6- omega3 ratio and genetic variation- nutritional implications for chronic diseases. Biomedicine & Pharmacotherapy, 60, 502-507.
7Innis, S. (2007). Dietary (n-3) fatty acids and brain development. The Journal of Nutrition, 855-859.
8Hughes, T. B. (2005). New paradigms for supporting the resilience of marine ecosystems. Trends in ecology and evolution, 380-386.
9Ramón, R. B. (2009). Fish consumption during pregnancy, prenatal mercury exposure, and anthropometric measures at birth in a prospective mother-infant cohort study in Spain. The American Journal of Clinical Nutrition, 90, 1047-1055.
10Arterburn, L. H. (2006). Distribution, interconversion, and dose-response of n-3 fatty acids in humans. Am J Clin Nutr, 1467S-1476S

11Jacobson, J. J.-E. (2008). Beneficial effects of a polyunsaturated fatty acid on infant development: Evidence from the Inuit of Arctic Quebec. J Pediatr, 152, 356-64.
12Forsyth, J. W. (2003). Long chain polyunsaturated fatty acid supplementation in infant formula and blood pressure in later childhood: follow up of a randomised controlled trial. BMJ, 326, 953-955.
13Bossart, G. (2006). Marine mammals as sentinel species for oceans and human health. Oceanography, 19(2), 134-137.
14Charuku, S. M.-D.-K. (2003). Higher maternal plasma docosahexaenoic acid during pregnancy is associcated with more mature neonatal sleep-state patterning. Am J Clin Nutr, 608-613.
15Hanson, L. K. (2002). The role of breastfeeding in prevention of neonatal infection. Semin Neonatol, 275-281.
16Wagner, C. G. (2008). Prevention of rickets and vitamin D deficiency in infants, children and adolescents. Pediatrics, 1142-1152.
17Prayer, D. K. (2005). MRI of normal fetal brain development. European Journal of radiology, 199-216.
18Paolicelli, R. C. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science, 1456-1458.
19Hepper, P. S. (1994). Development of fetal hearing. Archives of disease in childhood., 71, F81-F87.
20Hoffman, D. T. (2004). Maturation of visual acuity is accelerated in breast-fed term infants fed baby food containing DHA-enriched egg yolk. The Journal of Nutrition, 134(9), 2307-2313.